3.2.17 \(\int \frac {\sec (e+f x) (a+a \sec (e+f x))^{3/2}}{\sqrt {c-c \sec (e+f x)}} \, dx\) [117]

Optimal. Leaf size=95 \[ \frac {2 a^2 \log (1-\sec (e+f x)) \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}+\frac {a \sqrt {a+a \sec (e+f x)} \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}} \]

[Out]

2*a^2*ln(1-sec(f*x+e))*tan(f*x+e)/f/(a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)+a*(a+a*sec(f*x+e))^(1/2)*tan
(f*x+e)/f/(c-c*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {4040, 4037} \begin {gather*} \frac {2 a^2 \tan (e+f x) \log (1-\sec (e+f x))}{f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}+\frac {a \tan (e+f x) \sqrt {a \sec (e+f x)+a}}{f \sqrt {c-c \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(a + a*Sec[e + f*x])^(3/2))/Sqrt[c - c*Sec[e + f*x]],x]

[Out]

(2*a^2*Log[1 - Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) + (a*Sqrt[a +
 a*Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[c - c*Sec[e + f*x]])

Rule 4037

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_)], x_Symbol] :> Simp[a*c*Log[1 + (b/a)*Csc[e + f*x]]*(Cot[e + f*x]/(b*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c +
d*Csc[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4040

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
)^(n_), x_Symbol] :> Simp[(-d)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^(n - 1)/(f*(m + n))),
 x] + Dist[c*((2*n - 1)/(m + n)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^(n - 1), x], x]
 /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0] &&  !LtQ[m,
-2^(-1)] &&  !(IGtQ[m - 1/2, 0] && LtQ[m, n])

Rubi steps

\begin {align*} \int \frac {\sec (e+f x) (a+a \sec (e+f x))^{3/2}}{\sqrt {c-c \sec (e+f x)}} \, dx &=\frac {a \sqrt {a+a \sec (e+f x)} \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}+(2 a) \int \frac {\sec (e+f x) \sqrt {a+a \sec (e+f x)}}{\sqrt {c-c \sec (e+f x)}} \, dx\\ &=\frac {2 a^2 \log (1-\sec (e+f x)) \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}+\frac {a \sqrt {a+a \sec (e+f x)} \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.40, size = 174, normalized size = 1.83 \begin {gather*} \frac {\sqrt {2} a \left (1+\cos (e+f x) \left (4 \log \left (1-e^{i (e+f x)}\right )-2 \log \left (1+e^{2 i (e+f x)}\right )\right )\right ) \sec ^{\frac {3}{2}}(e+f x) \sqrt {a (1+\sec (e+f x))} \left (\cos \left (\frac {1}{2} (e+f x)\right )+i \sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin \left (\frac {1}{2} (e+f x)\right )}{\left (1+e^{i (e+f x)}\right ) \sqrt {\frac {e^{i (e+f x)}}{1+e^{2 i (e+f x)}}} f \sqrt {c-c \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(a + a*Sec[e + f*x])^(3/2))/Sqrt[c - c*Sec[e + f*x]],x]

[Out]

(Sqrt[2]*a*(1 + Cos[e + f*x]*(4*Log[1 - E^(I*(e + f*x))] - 2*Log[1 + E^((2*I)*(e + f*x))]))*Sec[e + f*x]^(3/2)
*Sqrt[a*(1 + Sec[e + f*x])]*(Cos[(e + f*x)/2] + I*Sin[(e + f*x)/2])*Sin[(e + f*x)/2])/((1 + E^(I*(e + f*x)))*S
qrt[E^(I*(e + f*x))/(1 + E^((2*I)*(e + f*x)))]*f*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Maple [A]
time = 2.93, size = 162, normalized size = 1.71

method result size
default \(\frac {\left (2 \cos \left (f x +e \right ) \ln \left (-\frac {\cos \left (f x +e \right )-1+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-4 \cos \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+2 \cos \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-\cos \left (f x +e \right )-1\right ) \sqrt {\frac {a \left (\cos \left (f x +e \right )+1\right )}{\cos \left (f x +e \right )}}\, \sqrt {\frac {c \left (-1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}}\, a}{f \sin \left (f x +e \right ) c}\) \(162\)
risch \(-\frac {2 i a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{2 i \left (f x +e \right )}-{\mathrm e}^{i \left (f x +e \right )}\right )}{\left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, f \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )}-\frac {4 i a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )}{\left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, f}+\frac {2 i a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )}{\left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, f}\) \(322\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(2*cos(f*x+e)*ln(-(cos(f*x+e)-1+sin(f*x+e))/sin(f*x+e))-4*cos(f*x+e)*ln(-(-1+cos(f*x+e))/sin(f*x+e))+2*cos
(f*x+e)*ln(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))-cos(f*x+e)-1)*(a*(cos(f*x+e)+1)/cos(f*x+e))^(1/2)*(c*(-1+co
s(f*x+e))/cos(f*x+e))^(1/2)/sin(f*x+e)/c*a

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 296 vs. \(2 (94) = 188\).
time = 0.57, size = 296, normalized size = 3.12 \begin {gather*} -\frac {2 \, {\left (a \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) \sin \left (2 \, f x + 2 \, e\right ) + {\left (a \cos \left (2 \, f x + 2 \, e\right )^{2} + a \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, a \cos \left (2 \, f x + 2 \, e\right ) + a\right )} \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right ) + 1\right ) - 2 \, {\left (a \cos \left (2 \, f x + 2 \, e\right )^{2} + a \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, a \cos \left (2 \, f x + 2 \, e\right ) + a\right )} \arctan \left (\sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ), \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) - 1\right ) - {\left (a \cos \left (2 \, f x + 2 \, e\right ) + a\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )\right )} \sqrt {a} \sqrt {c}}{{\left (c \cos \left (2 \, f x + 2 \, e\right )^{2} + c \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, c \cos \left (2 \, f x + 2 \, e\right ) + c\right )} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-2*(a*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))*sin(2*f*x + 2*e) + (a*cos(2*f*x + 2*e)^2 + a*sin(2*
f*x + 2*e)^2 + 2*a*cos(2*f*x + 2*e) + a)*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1) - 2*(a*cos(2*f*x + 2*
e)^2 + a*sin(2*f*x + 2*e)^2 + 2*a*cos(2*f*x + 2*e) + a)*arctan2(sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x +
2*e))), cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 1) - (a*cos(2*f*x + 2*e) + a)*sin(1/2*arctan2(s
in(2*f*x + 2*e), cos(2*f*x + 2*e))))*sqrt(a)*sqrt(c)/((c*cos(2*f*x + 2*e)^2 + c*sin(2*f*x + 2*e)^2 + 2*c*cos(2
*f*x + 2*e) + c)*f)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-(a*sec(f*x + e)^2 + a*sec(f*x + e))*sqrt(a*sec(f*x + e) + a)*sqrt(-c*sec(f*x + e) + c)/(c*sec(f*x +
e) - c), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \sec {\left (e + f x \right )}}{\sqrt {- c \left (\sec {\left (e + f x \right )} - 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))**(3/2)/(c-c*sec(f*x+e))**(1/2),x)

[Out]

Integral((a*(sec(e + f*x) + 1))**(3/2)*sec(e + f*x)/sqrt(-c*(sec(e + f*x) - 1)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{\cos \left (e+f\,x\right )\,\sqrt {c-\frac {c}{\cos \left (e+f\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(e + f*x))^(3/2)/(cos(e + f*x)*(c - c/cos(e + f*x))^(1/2)),x)

[Out]

int((a + a/cos(e + f*x))^(3/2)/(cos(e + f*x)*(c - c/cos(e + f*x))^(1/2)), x)

________________________________________________________________________________________